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HJB equation. Q := (0, +o0) x RN

Ju 1 .
(CP) 5 EAu +H(x,Du)=0 in Q
u=g on d,Q
e (x,p)— H(x,p) is smooth
e pH H(x,p) is convex and superlinear

e 9e€C,(RY), infgyg>—00 bounded below



Objective. Long-time behavior of the solution:

u(t, x)
t

> ? u(t,x) —? (t — 00)

Related results.

PDE: Barles-Souganidis('01), Souplet-Zhang('06),
Barles-Porretta-Tchamba(’10), Fujita-Ishii-Loreti(’06),
etc.

Probability (math finance): Fleming-Sheu('99),
Nagai(’03,”10), Hata-Nagai-Sheu("10), I.-Sheu("10), etc.



Example 1 (quadratic case).

1
Hx,p) = 5a(0p-p +b(x) - p =~ V(x)
o wl<alx)<al, a1, >0

° 181|X|2—CSb(X)'XSﬁlelz-FC, IBl,,BZER, C>0
e YxP-C<V(x)<ylxP+C, y1,72€ R, C>0

® Either Y1 > 0 or :81 > (0 , V1> —IB%/QQ



Example 2 (superlinear). H(x,p) = %Iplm — f(x)

Ju 1 1 - ,
(CP) E—EAM-FalDMl —f IHQ
u=g on d,Q
o m>1

e Clxff-C<sfx)<CA+1xFf), >0, C>0

In this talk, we discuss Example 2 only. (for simplicity)



Stochastic control interpretation
e
u(T, x) = infE[ f &l + FXD)|dt + g(xi)]
3 o 'm

f
Xf:x—fésdt+wt, 0<t<T
0

m
i — > 1
°m m—1

e W = (W,): standard (¥;)-Brownian motion in R¥

o & =(&): RN-valued, (F;)-prog. m’ble (control)



Theorem 1. (CP) has a minimal solution u in the class

®:=f{ueC*QNC,(Q)| inf u>-oo, VT >0}

[0,T]xRN

Moreover, u coincides with the value function of the
stochastic control problem above.

Remark. Suppose m >2 or g(x) < C(1 + |x|#/m+),
Then, the solution is unique in .



Long-time behavior. u(T,x) = AT+ ¢@(x)+c (T > 1)

u(T, -)

= > A in C(RY) as T — o

u(T, )= AT — @(-)+c in C(RY) as T — oo

Goal. Characterization of (A%, ) and c.

Remark. (A%, @) doesnot depend on g, while ¢ does.



Simplestexample. N=1, m=2, f(x)=x*, ¢=0

du_1du 1w\ .o
of 20x2 2\ox|] 77 t=0
ezxsz_l\/i ezsz
T, x) = V2t 21 —log?2
uT 0 = V2 VT 1 2 Sy P

z\/§T+7\/_x2—log2 (T>1)



Limiting equation. (A", @) is a solution of

1 1
(EP)  A=SA¢+—IDYI" = f in RY, ¢(0)=0
We call it an ergodic problem.

Remark. (EP) has many solutions (A, ¢).

How to select the correct candidate among them ?
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Simplest example. N=1, m=2, f(x)=x°
1 1
) A= et 501 =2 (0) =

(A1, 1) = (V2, \/_ x?) is a solution of (*).

(A2, P2) = (= V2, —ixz) is also a solution of (*).

Remark. The former turns out to be the correct one.
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Characterization of the candidate.

(EP) A- %Agb + %Inglm =f inRY, ¢0)=0

Theorem 2. (a) There exists a constant A" € R such that
(EP), has a solution ¢ & A<A
(b) Let (A, ) be any solution of (EP). Then,
A=A" iff iﬂ%fgb > —00

Moreover, such solution is unique.
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Stochastic control interpretation.

Let (A%, @) be the unique solution of (EP).
. 1. (" ;
A" = infliminf —E (—|gt|m + f(XD))dt

¢ T—o0
—x f Cfsdt+wt

Optimal feedback process. &*(x) := |[Do(x)["*D¢(x)
dXt — —5*(Xt) dt + th, t > O

Remark. X = (X;) is ergodic (positive recurrent).
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2, f(x)=x°

Simplest example. N =1, m

- 1 o 2 _
A > P T 5Px = X, »(0) =0

A= V2, ox) = gxz

E°(x) = [DP()"2D(x) = @(x) = V2x
dX, = —\2X, dt + dW, (Ornstein-Uhlenbeck process)

Invariant measure: u(x) = Z-'exp(— V2x?) (Gaussian)
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Main results. (A%, ¢): unique solution of (EP)
Theorem 3. For any solution u € ® of (CP),

u(T, )
T

s A* in C(RY) as T — oo.

Theorem 4. Suppose that [ > m" = % Then,

u(T, ) — (AT +@(-) — dc in CRY) as T — co.

Remark. We do not know if f > m* is removable or not.
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Thank you for your attention!
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