Large time behavior of solutions of Hamilton-Jacobi-Bellman equations with superlinear nonlinearity in gradients

Naoyuki Ichihara
(Hiroshima University, Japan)

March, 2012

HJB equation. $\quad Q:=(0,+\infty) \times \mathbb{R}^{N}$
(CP) $\quad \begin{aligned} \frac{\partial u}{\partial t}-\frac{1}{2} \Delta u+H(x, D u) & =0 & & \text { in } Q \\ u & =g & & \text { on } \partial_{p} Q\end{aligned}$

- $(x, p) \mapsto H(x, p)$ is smooth
- $\quad p \mapsto H(x, p)$ is convex and superlinear
- $\quad g \in C_{p}\left(\mathbb{R}^{N}\right), \quad \inf _{\mathbb{R}^{N}} g>-\infty \quad$ bounded below

Objective. Long-time behavior of the solution:

$$
\frac{u(t, x)}{t} \longrightarrow ? \quad u(t, x) \longrightarrow ? \quad(t \rightarrow \infty)
$$

Related results.
PDE: Barles-Souganidis('01), Souplet-Zhang('06),
Barles-Porretta-Tchamba('10), Fujita-Ishii-Loreti('06), etc.
Probability (math finance): Fleming-Sheu('99),
Nagai('03,'10), Hata-Nagai-Sheu('10), I.-Sheu('10), etc.

Example 1 (quadratic case).

$$
H(x, p)=\frac{1}{2} a(x) p \cdot p+b(x) \cdot p-V(x)
$$

- $\quad \alpha_{1} I \leq a(x) \leq \alpha_{2} I, \quad \alpha_{1}, \alpha_{2}>0$
- $\beta_{1}|x|^{2}-C \leq b(x) \cdot x \leq \beta_{2}|x|^{2}+C, \quad \beta_{1}, \beta_{2} \in \mathbb{R}, \quad C>0$
- $\gamma_{1}|x|^{2}-C \leq V(x) \leq \gamma_{2}|x|^{2}+C, \quad \gamma_{1}, \gamma_{2} \in \mathbb{R}, \quad C>0$
- Either $\gamma_{1}>0$ or $\beta_{1}>0, \gamma_{1}>-\beta_{1}^{2} / \alpha_{2}$

Example 2 (superlinear). $H(x, p)=\frac{1}{m}|p|^{m}-f(x)$
(CP) $\quad \frac{\partial u}{\partial t}-\frac{1}{2} \Delta u+\frac{1}{m}|D u|^{m}=f \quad$ in Q

$$
u=g \quad \text { on } \quad \partial_{p} Q
$$

- $m>1$
- $\quad C^{-1}|x|^{\beta}-C \leq f(x) \leq C\left(1+|x|^{\beta}\right), \quad \beta>0, C>0$

In this talk, we discuss Example 2 only. (for simplicity)

Stochastic control interpretation

$$
\begin{gathered}
u(T, x)=\inf _{\xi} E\left[\int_{0}^{T}\left\{\frac{1}{m^{*}}\left|\xi_{t}\right|^{m^{*}}+f\left(X_{t}^{\xi}\right)\right\} d t+g\left(X_{T}^{\xi}\right)\right] \\
X_{t}^{\xi}=x-\int_{0}^{t} \xi_{s} d t+W_{t}, \quad 0 \leq t \leq T
\end{gathered}
$$

- $m^{*}:=\frac{m}{m-1}>1$
- $W=\left(W_{t}\right)$: standard $\left(\mathcal{F}_{t}\right)$-Brownian motion in \mathbb{R}^{N}
- $\xi=\left(\xi_{t}\right): \mathbb{R}^{N}$-valued, $\left(\mathcal{F}_{t}\right)$-prog. m'ble (control)

Theorem 1. (CP) has a minimal solution u in the class

$$
\Phi:=\left\{u \in C^{1,2}(Q) \cap C_{p}(\bar{Q}) \mid \inf _{[0, T] \times \mathbb{R}^{N}} u>-\infty, \quad \forall T>0\right\} .
$$

Moreover, u coincides with the value function of the stochastic control problem above.

Remark. Suppose $m \geq 2$ or $g(x) \leq C\left(1+|x|^{(\beta / m)+1}\right)$.
Then, the solution is unique in Φ.

Long-time behavior. $\quad u(T, x) \approx \lambda^{*} T+\varphi(x)+c \quad(T \gg 1)$

$$
\begin{gathered}
\frac{u(T, \cdot)}{T} \longrightarrow \lambda^{*} \quad \text { in } C\left(\mathbb{R}^{N}\right) \text { as } T \rightarrow \infty \\
u(T, \cdot)-\lambda^{*} T \rightarrow \varphi(\cdot)+c \quad \text { in } C\left(\mathbb{R}^{N}\right) \text { as } T \rightarrow \infty
\end{gathered}
$$

Goal. Characterization of $\left(\lambda^{*}, \varphi\right)$ and c.
Remark. $\left(\lambda^{*}, \varphi\right)$ does not depend on g, while c does.

Simplest example. $\quad N=1, \quad m=2, \quad f(x)=x^{2}, \quad g=0$

$$
\begin{gathered}
\frac{\partial u}{\partial t}-\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}+\frac{1}{2}\left(\frac{\partial u}{\partial x}\right)^{2}=x^{2},\left.\quad u\right|_{t=0}=0 \\
u(T, x)=\sqrt{2} t+\frac{e^{2 \sqrt{2} T}-1}{e^{2 \sqrt{2} T}+1} \frac{\sqrt{2}}{2} x^{2}-\log \frac{e^{2 \sqrt{2} T}}{e^{2 \sqrt{2} T}+1}-\log 2 \\
\approx \sqrt{2} T+\frac{\sqrt{2}}{2} x^{2}-\log 2 \quad(T \gg 1)
\end{gathered}
$$

Limiting equation. $\left(\lambda^{*}, \varphi\right)$ is a solution of
(EP) $\quad \lambda-\frac{1}{2} \Delta \phi+\frac{1}{m}|D \phi|^{m}=f \quad$ in $\mathbb{R}^{N}, \quad \phi(0)=0$
We call it an ergodic problem.
Remark. (EP) has many solutions (λ, ϕ).
How to select the correct candidate among them?

Simplest example. $\quad N=1, \quad m=2, \quad f(x)=x^{2}$
$(*) \quad \lambda-\frac{1}{2} \phi_{x x}+\frac{1}{2} \phi_{x}^{2}=x^{2}, \quad \phi(0)=0$
$\left(\lambda_{1}, \phi_{1}\right)=\left(\sqrt{2}, \frac{\sqrt{2}}{2} x^{2}\right)$ is a solution of $(*)$.
$\left(\lambda_{2}, \phi_{2}\right)=\left(-\sqrt{2},-\frac{\sqrt{2}}{2} x^{2}\right)$ is also a solution of $(*)$.
Remark. The former turns out to be the correct one.

Characterization of the candidate.
(EP) $\quad \lambda-\frac{1}{2} \Delta \phi+\frac{1}{m}|D \phi|^{m}=f \quad$ in $\mathbb{R}^{N}, \quad \phi(0)=0$
Theorem 2. (a) There exists a constant $\lambda^{*} \in \mathbb{R}$ such that
$(E P)_{\lambda}$ has a solution $\phi \quad \Longleftrightarrow \lambda \leq \lambda^{*}$
(b) Let (λ, ϕ) be any solution of ($E P$). Then,

$$
\lambda=\lambda^{*} \quad \text { iff } \quad \inf _{\mathbb{R}^{N}} \phi>-\infty
$$

Moreover, such solution is unique.

Stochastic control interpretation.

Let $\left(\lambda^{*}, \varphi\right)$ be the unique solution of (EP).

$$
\begin{gathered}
\lambda^{*}=\inf _{\xi} \liminf _{T \rightarrow \infty} \frac{1}{T} E\left[\int_{0}^{T}\left(\frac{1}{m^{*}}\left|\xi_{t}\right|^{m^{*}}+f\left(X_{t}^{\xi}\right)\right) d t\right] \\
X_{t}^{\xi}=x-\int_{0}^{t} \xi_{s} d t+W_{t}
\end{gathered}
$$

Optimal feedback process. $\quad \zeta^{*}(x):=|D \varphi(x)|^{m-2} D \varphi(x)$

$$
d X_{t}=-\xi^{*}\left(X_{t}\right) d t+d W_{t}, \quad t \geq 0
$$

Remark. $X=\left(X_{t}\right)$ is ergodic (positive recurrent).

Simplest example. $\quad N=1, \quad m=2, \quad f(x)=x^{2}$

$$
\begin{gathered}
\lambda^{*}-\frac{1}{2} \varphi_{x x}+\frac{1}{2} \varphi_{x}^{2}=x^{2}, \quad \varphi(0)=0 \\
\lambda^{*}=\sqrt{2}, \quad \varphi(x)=\frac{\sqrt{2}}{2} x^{2} \\
\xi^{*}(x)=|D \varphi(x)|^{m-2} D \varphi(x)=\varphi_{x}(x)=\sqrt{2} x \\
d X_{t}=-\sqrt{2} X_{t} d t+d W_{t} \quad \text { (Ornstein-Uhlenbeck process) }
\end{gathered}
$$

Invariant measure: $\mu(x)=Z^{-1} \exp \left(-\sqrt{2} x^{2}\right) \quad$ (Gaussian)

Main results. ($\left.\lambda^{*}, \varphi\right)$: unique solution of (EP)
Theorem 3. For any solution $u \in \Phi$ of (СР),

$$
\frac{u(T, \cdot)}{T} \rightarrow \lambda^{*} \quad \text { in } C\left(\mathbb{R}^{N}\right) \text { as } T \rightarrow \infty
$$

Theorem 4. Suppose that $\beta \geq m^{*}=\frac{m}{m-1}$. Then,

$$
u(T, \cdot)-\left(\lambda^{*} T+\varphi(\cdot)\right) \longrightarrow \exists c \quad \text { in } C\left(\mathbb{R}^{N}\right) \text { as } T \rightarrow \infty
$$

Remark. We do not know if $\beta \geq m^{*}$ is removable or not.

Thank you for your attention!

